منابع مشابه
N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection
The RNA modification N6-methyladenosine (m6A) post-transcriptionally regulates RNA function. The cellular machinery that controls m6A includes methyltransferases and demethylases that add or remove this modification, as well as m6A-binding YTHDF proteins that promote the translation or degradation of m6A-modified mRNA. We demonstrate that m6A modulates infection by hepatitis C virus (HCV). Depl...
متن کاملN6-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression
The internal N(6)-methyladenosine (m(6)A) methylation of eukaryotic nuclear RNA controls post-transcriptional gene expression, which is regulated by methyltransferases (writers), demethylases (erasers), and m(6)A-binding proteins (readers) in cells. The YTH domain family proteins (YTHDF1-3) bind to m(6)A-modified cellular RNAs and affect RNA metabolism and processing. Here, we show that YTHDF1-...
متن کاملN6-methyladenosine Modification in Bacterial mRNA
Among more than 140 naturally occurring RNA modifications have been identified, N6-methyladenosine (m6A) is the most abundant messenger RNA (mRNA) modification in eukaryotic organisms. A group of demethylases, methyltransferase and m6A-specific binding proteins in mammals, plants as well as yeast are in support of the regulatory functions of this RNA modification. Recent years, with the fast de...
متن کاملN6-methyladenosine Modulates Messenger RNA Translation Efficiency
N(6)-methyladenosine (m(6)A) is the most abundant internal modification in mammalian mRNA. This modification is reversible and non-stoichiometric and adds another layer to the dynamic control of mRNA metabolism. The stability of m(6)A-modified mRNA is regulated by an m(6)A reader protein, human YTHDF2, which recognizes m(6)A and reduces the stability of target transcripts. Looking at additional...
متن کاملEmerging Roles of N6-Methyladenosine on HIV-1 RNA Metabolism and Viral Replication
N6-methyladenosine (m6A) is the most abundant internal modification present in Eukaryotic mRNA. The functions of this chemical modification are mediated by m6Abinding proteins (m6A readers) and regulated by methyltransferases (m6A writers) and demethylases (m6A erasers), which together are proposed to be responsible of a new layer of post-transcriptional control of gene expression. Despite the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Microbiology
سال: 2019
ISSN: 1664-302X
DOI: 10.3389/fmicb.2019.00417